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Buneman’s block cyclic reduction method has been modified to solve a capillary wave
problem which is characterized by a nonlinear boundary condition on the free surface. This
technique requires an iterative solution of only the unknown boundary values along the free
streamline. Once the free surface values are known, the remaining unknowns are determined
directly. Comparisons of the numerical solutions with existing exact solutions demonstrate the
accuracy and efficiency of this method for handling the nonlinear boundary condition. Some
generalizations of the method have also been discussed.

1. INTRODUCTION

Several direct numerical techniques have been developed to solve the discretized
Poisson’s equation in recent years. Among these, the direct solver which utilizes the
block cyclic reduction method is considered to be one of the most efficient, since it
requires the least storage and operation count [1]. This method was first applied by
Buneman [2] to solve Poisson’s equations with Dirichlet boundary conditions on a
rectangle. Generalizations have been considered which deal with (1) different
boundary conditions [3], (2) irregular domains [3-5], and (3) different coordinate
systems |6, 7]. An original restriction on the order of the matrices has been removed
[8,9]. In addition to Poisson’s equations, this method can also be used to solve the
biharmonic equation (5], separable [10], and nonseparable [11] elliptic equations
and even parabolic equations [12]. Some authors have suggested faster methods by
combining the block cyclic reduction technique with the fast Fourier transform (FFT)
method [13, 14] and with a marching technique {15].

We observed that due to some special properties of the reduction process, this
method can be modified to efficiently solve a capillary wave problem, which is
characterized by a nonlinear boundary condition on the free surface. The technique
developed here is superior to conventional finite-difference iterative methods in that
only the unknown values on the free streamline are involved in the iteration. After
convergence is achieved, the remaining unknowns are computed directly. An exact
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solution of capillary waves on water of infinite depth was first derived by Crapper
[16]. Kinnersley [17] later extended Crapper’s approach to obtain exact solutions for
capillary waves on water of finite depth. We shall compare our numerical solutions
with the exact solutions obtained by Kinnersley to verify the accuracy of the method
presented here. Recently, several researchers [19-22] have studied gravity-capillary
waves by representing the free surfaces with various integro-differential equations,
and solving the equations numerically. Bloor [19] reported on the computation of
pure capillary waves on thin sheets of water using a truncated Fourier Series but no
direct comparison was made with Kinnersley’s solution, although a comparison was
made with Crapper’s solution for water of infinite depth.

In Section 2, we formulate the capillary wave problem and present the exact
solutions obtained by Kinnersley [17]. The numerical procedure to solve the problem
is given in Section 3. Comparisons of the numerical solutions with the exact solutions
are made in Section 4. Finally, we discuss some generalizations of the method in
Section 5.

2. CAPILLARY WAVE PROBLEM WITH EXACT SOLUTION

Figure 1 illustrates the fluid motion being considered: symmetric capillary waves
move with phase velocity u, to the right on the free surfaces of an ideal fluid sheet,
and surface tension is assumed to be the only restoring force. If we introduce
Cartesian coordinates (¥, ) moving with velocity u, to the right with X measured to
the right and j vertically upwards from the line of symmetry, the waves will appear
to be steady. Due to the symmetry of the problem, we need only consider the flow
region bounded by the line of symmetry and the free surface.

The wave motion will be assumed irrotational, and we define the complex velocity
potential w = ¢— + iy and the complex velocity

dw _ie

—F=E—i=ge",  where I=X+iy, (1)

and @, U are the velocity components in the X, j directions, respectively, §=
(@* + 8*)"? is the speed, and @ is the deflection angle. The free boundary is a
streamline which we can take to be ¥ = 0 without loss of generality. If we denote the

= ﬁ‘_
y v

Fic. 1. Capillary waves on a thin fluid sheet.
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line of symmetry (X axis in Fig. 1) to be ¥ = —Lu,, where L is one-half the thickness
of the undisturbed fluid sheet, we can introduce the dimensionless variables

z=1z/L, u=ulugy, v =10/u,, w = w/(Luy), q = q/u,. 2)

The flow region in the physical plane can be mapped into the w plane with the
correspondence shown in Fig. 2.
Let I'(w) be the logarithm of the dimensionless complex velocity,

I'(w)=In(dw/dz) = Q(¢, v) — i0(9,y),  where Q=Ing, @)

I'(w) will be an analytic function of w with Q, @ related by the Cauchy-Riemann
equations, i.e.,

o0 o 90 o

v o o oy @

and both Q and @ will satisfy Laplace’s equation

Q00 88 8

79 +a—WT=5F+-a—wz— 0. (5)

The boundary conditions of the wave problem will now be discussed.

a. Boundary Condition on the Free Streamline
We apply Bernoulli’s equation on the free streamline y =0, i.e.,

P+ 3pG* = py + 3pus, (6)

where p is the constant fluid density. The fluid pressure p just inside the free surface
and the constant pressure p, of the surroundings are related by Laplace’s formula

po_ﬁST/Ef' (7

Free | boundary

‘W

Line of | symmetry

F1G. 2. The w plane.
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Here T is the surface tension coefficient and Rf=§ /L is the nondimensional radius
of curvature of the free streamline, i.e.,

00 o6
R=2_ % 8

where ds is the differential arc length along the free streamline. If we substitute (7)
and (8) into (6), we obtain after some manipulations,

H=la@=a) on v=o )
where a = pulL/T is the Weber number. Putting ¢ = ¢? and using (4), we find
—Z——g—zasinhQ on y=0. (10)

b. Boundary Condition on the Line of Symmetry

On the line of symmetry w = —1, the fluid deflection angle is constant, ie., 8§ =0;
hence 86/6¢ = 0. Using (4), this yields

2:0 on y=-—l. (11)
oy

¢. Periodicity of Q in the w Plane

It is shown in Appendix A that Q(¢,w) is periodic with respect to ¢. If the
wavelength of Q in the w plane is defined to be A, we can impose the periodic
boundary condition, i.e.,

Q@ v) =00 + 4, v) (12)
Collecting all the results, we have the nonlinear problem’
o*Q  9*Q
7,
£=asinhg on w=0, (13b)
%%:O on y=-1, (13¢)

! Note our nondimensionalization is different from that used by Crapper so that the Weber number a
appears explicitly here in the nonlinear boundary condition (13b); thus w varies from —1 to O for all
values of a.
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Q@ v)=00@+4y), —-1<y<O, (13d)

where S is an arbitrary constant.

We should note that this problem is translationally invariant with respect to ¢, and
we may define the problem in the domain (—1 L w <0, 0 < ¢ <A). The nonlinear
capillary wave problem is displayed in Fig. 3 and it can be verified that 0 =01is a
solution of the boundary value problem. However, when A satisfies a dispersion
equation, to be derived later, there are also nontrivial solutions which we will
determine using a numerical method.

The derivation of an exact solution for the boundary value problem in Fig. 3 is
given in Appendix A; here we present the solution as follows:

1+ (ke sn(yd, k)/dn[y(y + 1), x'])
1— @ sn(y, )/dn[y(y + 1), x']) |’

__asn(y, k') en(y, k')
a=yK dn(y,x’) ’ (15)

(14)

O=In

where sn, cn, and dn are the Jacobian elliptic functions in standard notation {18] and
k is the modulus. Here y, which is proportional to the wave number, and the
complementary modulus x’ are related by dispersion formula (15). Moreover, y must
satisfy the inequality

0<y<K', (16)

to prevent the denominator of (14) from vanishing. Here K’ is the complementary
elliptic integral of the first kind.

The period of the elliptic function sn is 4K, where K is the elliptic integral of the
first kind; thus we obtain from (14)

Y@ +4)— 9 =4K. (17)
Thus the wavelength A of Q in the w plane is given by

A= 4K/y. (18)

) ¢

2 2
alqy) €9,99.5 QW)= Q(0y)

y=-l

F1G. 3. Nonlinear capillary wave problem.
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3. NUMERICAL PROCEDURE TO SOLVE THE CAPILLARY WAVE PROBLEM

To solve the capillary wave problem shown in Fig. 3 numerically, we introduce a
grid on the rectangular domain by selecting two integers M and N and defining the
grid sizes h = A/M, k= 1/N, then

pi=@{—Dh, i=12.,M,

. (19)
v =—1+jk,  j=0,1,..,N.

The grid is shown in Fig. 4. Note that the rectangle defined by the solid lines is the
domain of integration.

Centered second-order differences will be used to approximate the derivatives.
After discretizing Laplace’s equation with the standard five-point scheme, we obtain

QijsitQiji1—2(1+0)Q; ;+0(Qi 1+ Qiy1,)=0,

i=12,..,M, j=0,1,.,N, (20)

where o = (k/h)* and Q;,; is an approximation for Q(¢;, v,).

Boundary conditions (13b) and (13c¢) require
Qins1=2aksinh Q; v+ Q; v_1, i=1,2,.,M, (21a)
Qi =0, i=1,2..,M, (21b)
and the periodicity condition (13d) yields

Q0.;=0u;» J=0,1,.,N, (21¢c)
Oui1,;i=01 Jj=0, 1., N. (21d)

In (20), there are unknown values of Q which correspond to the points on the
fictitious dotted lines shown in Fig. 4; these unknowns can be replaced by boundary
and interior point values using (21).

If we combine (20) and (21), after placing the nonlinear unknown terms arising
from (21a) on the right-hand side, we obtain a system of equations which can be
written in the matrix form

B-Q=b, (22)
where B is the (N + 1) X (N + 1) matrix of block tridiagonal form

A 21
I A1

B= ; (23)

2 A
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FiG. 4. Mesh for numerical integration.

I is the M X M identity matrix, and A is the M X M matrix

—2(1 +0) o
o ~2(1 +0) o 0
A=
0 g -2(1 +0)
o g

Q and b are vectors in partitioned form

QO b0
Q b,
Q = E 5 b= : ’
QN— 1 bN— 1
Qv by
with
Qi
0,.J
sz 5 3 j=05 19"-9N’
On-1.s
Owm.;
b, b,,....by_, are Mth-order null vectors and
sinh Q, y
sinh 9,
b, = —2ak :
sinh @y v

sinh Q,, v

(25)

(26)

27)
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Buneman’s algorithm has been explained in detail by Buzbee et al. [3]; here we
note two important facts about this method.

(i) If we want to solve (22) by Buneman’s algorithm, the reduction process will
eliminate the unknowns systematically until only the middle vector Q,.-, is left (here
we assume N =2" with m an integer for simplicity); thus Q,._. is always the first
vector to be determined.

(i) During the process of reduction, all the right-hand side vectors
corresponding to the reduced systems will be reconstructed; however, the middle
vector b, does not influence the reconstruction of the other right-hand side vectors.

If we want to take advantage of Buneman’s algorithm and solve (22) efficiently, it
would be desirable to have Q, and b, located in the middle of the array. This can be
achieved by reflecting all the vectors above Q, to a position below it as shown in
(28a):

( N oY) s
A 2 Q, bﬂ
I A 1 Q, b,
I A Q| = by | (28a)
1 A 1]]0Q, b,
L 2 AJ \QOJ \bOJ

If we define the corresponding matrix and vectors in (28a) to be B’, Q', and b’,
respectively, then we have

B -Q' =b, (28b)

and the order of the matrix B’ is (2N¥ + 1). Now we solve the system of equations
(28) by Buneman’s algorithm, noting that b, is the middle vector, and all the
nonlinear terms in b, will not influence the other right-hand side vectors during the
course of the reduction.

To apply Buneman’s algorithm on (28), we will have to compute the sequence
P}, 9"}, i=0,1,.,2N + 1, r=1,2,..,m + 1. Due to the symmetry of system (28),
the computation of {p{”, q{”} for j > N is not required. Moreover, all the right-hand
side vectors in (28) are null vectors except by; this implies that all {p}”,q}"},
Jj=0,1,.,N—1, r=1,2,.,m are null vectors for this particular problem. Thus, we
start the reduction directly by constructing {p{’,q{}, r=1,2,...,m + 1. Given an
initial guess for Q,, say Q\, we start by constructing {py’, q\}. The final equation
of the reduction will be

C(m+1)(QN_p1(Vm+l))=ql(vm+l)’ (29)
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or
Qu=py"* ! + D7 g, (30)
where
Cim+h — _ jI’jI (A +2cos 6{"* V1), 31
and
Gt = jn/27,  j=1,2,.,2"" (32)

Since p"*" and q{"*" are functions of QY’, Eq. (30) can be written in the form

Qv=F@QY), (33)
where
F(Q)=piy* " +Cm+ 7 g (34)

We solve (29) or (33) for Q,, and once Q, is known, denoting it by Q}’, we may
check if Q¥ — Q|| is less than a given tolerance. If the tolerance is met, all the
remaining unknowns can be back-solved directly; if not, we replace Q¥ by Q' and
repeat the process until convergence is achieved.

There are several problems with the above algorithm, namely:

(i) Placing the nonlinear unknown terms on the right-hand side of (22) implies
that the nonlinear boundary condition is treated as a Neumann-type boundary
condition; thus, the matrix B is formulated as if we were solving Laplace’s equation
with Neumann and periodic boundary conditions. It is well known that such a matrix
is singular. Moreover, B’ in (28) is also singular. The singular nature of B’ can be
verified by choosing a vector e of the form

e'=[&,&.\ €l ans1) (35)
with
el =1, L., 1], (36)
and noting that
B'-e=0. 37

Thus any constant multiple of e is a nontrivial homogeneous solution of (28).

(ii) We can not specify the phase of the capillary wave from the numerical
formulation of problem (22) since it is translationally invariant; however, it is
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desirable to fix the phase to make a comparison of the numerical solution with the
known exact solution.

(iii) Algorithm (33) is basically a fixed point iteration which may not converge
since hyperbolic sines are involved in the nonlinear terms and they have large slopes.

First, we consider the difficulties (i) and (ii) together.
The necessary and sufficient condition for system (28) to have a solution is given
by the Fredholm alternative [6], i.e.,

b'T.e=0. (38)

Since by, is the only nonzero forcing vector, (38) reduces to

M
> sinh Q; y=0. (39)
i=1

We should note that Green’s theorem requires

oQ
—_— = 4
3 ds=0, (40)

to obtain a source-free solution of Laplace’s equation. Carrying (40) out numerically
by the trapezoidal rule for the problem formulated in Fig. 3 yields the same result
(39).

It is important to note that if a singular linear system of equations has solutions,
the solutions will not be unique, for a new solution can be generated by adding a
solution of the corresponding homogeneous system to an existing solution. However,
the above statement is not valid for this particular wave problem because b’ in (28)
depends on nonlinear unknown terms. Adding any constant multiple of e to an
existing solution of (28) will not produce a new solution because (39) will not be
satisfied.

Owing to the fact that the nonlinear wave problem is translationally invariant with
respect to ¢, the numerical solution of (28) may have an infinite number of different
phases depending on the initial guess QY. However, the phase of the wave can be
fixed by imposing a value Q; y at a given point on the free streamline. The simplest
choice and the one that makes the comparison of the exact solution with the
numerical solution easiest, is to choose Q =0 at the first grid point on the free
streamline, i.e., O, y = 0. It is shown in Appendix B that once a numerical solution of
(28) is obtained, it can be used to generate M — 1 additional solutions with different
phases.

The following procedure for solving the singular system (28) will indicate how the
phase of the wave may be fixed, i.e., each time we perform the fixed point iteration
(33), we will choose a vector QY such that Q" is forced to satisfy (39) and to have
a fixed phase. '

581/49/2-4
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To show how the singularity in B’ is handled, we define

G;=A+2cos 9" "1, (41)
and (31) yields
2m+1
C(m+1) — j]':[l Gj- (42)

Substituting (42) into (29), we obtain

am+t

11 GQy—py*y=—qy"*". (43)
j=1

To solve (43), we put Z, = —qy"*" and repeatedly solve
GZ, =2, j=1,2.,2"", (44)

for Z,, j > 1. Since Gy is a matrix of nearly tridiagonal form with nonzero elements in
the upper right and lower left corners, we adopt the rank-one method [23,24] to
solve system (44). However, when we reach the last step of (44), i.e., j=2""", we
find cos {™*" = 1, and from (41)

Gy =A+2 (452)
—20 c o
o -20 o© 0
= - , (45b)
0 o —20 ]
o c —20

which is a singular matrix. Therefore at the last step we must solve the singular
system

Gyni1 Zomsty = Lomsr, (46)
where Z,,,.,,, , is defined as
Zyni =QY —py"* " (47)
Substituting (47) into (46), we obtain after rearranging the equation
Gyn QY =17, (48)

where Z is defined as

ZEsz+lp1(vm+”+Z1m+l, (49)
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which is a known vector. The nonzero vector & defined in (36) is a solution of the
equation

sz+l é=0. (50)

Thus, the necessary and sufficient condition for (48) to have a solution is

Z%&=0. (1)
If we denote the elements of Z to be
1'=(Z,Z,,.,2Z,), (52)
then (51) requires
Mo
N Z,=0, (53)

'

for a solution to exist.

As discussed previously, it is desirable to fix the phase of the wave by assigning a
specific element of Q to be zero for this problem. We shall choose the first element
of QF, 01 to be zero. Once Q1" is chosen, the solution of (48) will be unique and
we can determine the solution in the following way:

We multiply both sides of (48) by a nonsingular matrix [6] which is obtained by
replacing the first row of the M X M identity matrix by the vector €. After performing
the multiplication, we obtain a new system

G QY = (54)

where Gjx.1 remains the same as G, except the elements of the first row are zero,
and

Z~IT=

Mz

Z,Z,,., z‘,,,], (55a)

=[0,Z, s Z,,], (55b)

1

where we have used result (53). We can now delete the first equation of (54) and
since Q‘,"N is fixed to be zero, we may also delete the first column of Gjux.:; the
remaining matrix is of tridiagonal form. Now the contracted system of order (M — 1)
is no longer singular and we can solve for Q{"y, i=2,3,.. M.

To satisfy (39), while keeping the first element Q4" equal to zero, we must choose
a constant J, such that

n[4:

smh(Q“’ +8)=0. (56)
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After § is determined from (56), we add & to Q{'), i = 2, 3,..., M while keeping Q{’,
zero. The new QY is forced to satisfy (39) and the phase of the wave has been fixed
since the first element Q{’ is zero. Therefore, we have removed difficulties (i) and
(ii).

The remaining difficulty (iii) can be handled by applying Newton’s method to
accelerate the convergence of (33). Using (33), we define

H(Qy) =Qy—F(Qy) =0. (57)
Applying Newton’s method, we obtain the following equation
H(Q(l) (0) H(Q(O)) F(Q(O) (0) (58)
where J,, is the Jacobian matrix, defined as
oH,(Qy) 9F (Qy)
J, =0 . LN (59
“= 50 20, :

and I is the M X M identity matrix. Since we do not have an explicit expression for
F(Q,), we have to approximate the Jacobian matrix numerically.

First we choose an appropriate initial guess QY to perform the fixed point
iteration (33) as discussed above and obtain QY. Next we add a small number ¢ to
each of the elements of QY and repeat (33) to obtain

Quli, €) =F(QiNs Qi QLN + Erns Qltly (60)
The ith column on the Jacobian matrix is computed as
Jui=1—e71(Qu(, &) — Q) (61)
where I, is the ith column of the identity matrix L
After we obtain the Jacobian matrix, we solve (58) for Q\’. If |QY’ — QY| is

smaller than a given tolerance, which we chose to be 1.0 X 10™'° for all cases, we
back solve for the remaining unknowns; if not, we replace QY by QY and repeat the
iteration procedure. The back substitution process is straightforward, and the reader
may refer to Buzbee et al. [3] and Liu [24].

Since Newton’s method requires considerable computer time to evaluate the
Jacobian matrix, we computed the Jacobian matrix once and then used a method
proposed by Broyden [24,25] to update the Jacobian matrix. This procedure has
proven to be very successful.

We summarize our numerical algorithm as follows:

(1) Given the initial guess QS”, compute py’, qi’, r =1, 2,...,m + 1.
(2) Perform the fixed point iteration (33) to obtain Q.

(3) Construct the Jacobian matrix using (60) and (61).

(4) Solve (58) for Q.
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(5) Check convergence. If the tolerance is met, go to (8) below; otherwise
continue as follows:

(6) Update the Jacobian matrix by Broyden’s method.
(7) Replace Q) by Q{, repeat (1), (2), (4), and (5).
(8) Back-solve directly for the remaining unknowns.

4. COMPARISON OF NUMERICAL SOLUTION WITH EXACT SOLUTION

We chose two cases for comparison; one case corresponds to long waves and the
other to short waves. The variables for these two cases satisfy (15) and are specified
as

Case I: long waves a=0.7239937, x=0.3, A=6.
Case II: short waves a=11.801483, x=10x10"% 1=0.45.

To avoid the trivial solution, Q =0, the intial guess for Q, cannot be very small, or
the zero solution will result. An initial guess of magnitude one is recommended.
Attempts were also made to choose some arbitrary wavelengths 4 for Cases I and II
such that dispersion relation (15) is not satisfied; however, only trivial solutions were
obtained in those cases, as expected.

For each case, we chose two sets of mesh sizes (4, k), so that we could perform a
Richardson’s extrapolation to obtain solutions with fourth-order accuracy. The
computations were performed on an IBM 360/65 machine with double precision
arithmetic. The exact solution of these two cases can be computed using (14). Since
the wave is symmetric, we only present the results of a quarter wavelength on the free
surfaces. The comparisons for Cases I and II are shown in Tables I and II, respec-
tively. Numerical results for the long waves are very accurate while for the short
waves, the errors are larger than expected. In the latter cases the amplitude of Q is
not small and the wavelength is extremely short, so that the larger errors are due to
the steepness of the wave; thus, the truncated fourth-order derivatives are not
insignificant compared with the errors O(h?, k?). Nevertheless, the ratio of errors
(D,/D,) still remains almost 4 for every point when the mesh sizes are reduced by a
factor of two.

It is also interesting to compare the rate of convergence and the computation times
of Newton’s method and Broyden’s method. With all the parameters specified as in
CaseI-1 (see Table I), we made two computations using these different methods. Both
methods gave identical numerical solutions. Since Newton’s method should have a
quadratic rate of convergence, we can check the values of f,, such that

8n+l:fnsrzt’ (62)

where ¢, is the error of the nth iteration measured from the final frozen value. We
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took one point on the free streamline from TableI for the comparison, and the
numerical results are shown in Table III.

We observe that Newton’s method does indicate a quadratic rate of convergence.
In this example, there are 270 unknowns in the grid. The 30 points which are on the
free streamline are determined by the iteration while the remaining 240 points are
back-solved directly. Although Broyden’s method requires more iterations, it uses
considerably less computing time. Newton’s method required 80 sec of CPU time
while Broyden’s method required 29 sec of CPU time.

5. CONCLUSION

Numerical solutions of elliptic partial differential equations with nonlinear
boundary conditions using finite difference methods are rarely found in the literature.
Our development offers an accurate and efficient method to solve Laplace’s equation
with a nonlinear boundary condition. The discretized system of the capillary wave
problem can be reduced to a set of nonlinear algebraic equations involving unknowns
only on the nonlinear boundary line. Newton’s method is used to determine the
unknowns and the remaining boundary and interior points are determined directly.
This method has also been applied to solve the two-dimensional potential flow of a jet
emanating from a slot with surface tension effects taken into account [26]. In this
case we must handle a split boundary condition, i.e., the normal derivative is
specified in two parts on an infinite line, with one part being nonlinear.

Some generalizations of our method are présented here.

(i) The method is applicable to a nonlinear boundary condition on one side of
a rectangular domain which has the form éQ/on = f(Q), where f is any nonlinear
function of Q. Here we considered the special case f(Q) = a sinh Q (see Eq. (13b)).

(ii) Owing to the special properties of the block cyclic reduction method, it is
possible to solve a linear partial differential equation with two nonlinear boundary
conditions on opposite sides of a rectangular domain. To be specific, consider the
wave problem in this paper but with boundary condition (13c) replaced with a
nonlinear boundary condition of the form 0Q/on = g(Q), which might correspond to
another free surface. After discretizing the governing equations and placing the
nonlinear terms on the right-hand side, a new system (22) is obtained, similar to the
previous system except b, now depends on the unknown elements Q,. We reflect the
system as before and perform the reduction on (28). In this case we stop the
reduction process one step before the final result (29), to obtain three equations
resulting from the first, middle, and last equation of the array (28). The first and last
equations will be identical due to the reflection. Thus, we have two equations
involving the unknowns Q, and Q,. It should be noted that the values of b, and b,
do not enter into the reconstruction of any of the other right-hand side vectors during
the reduction process and thus the final two equations can be solved iteratively for Q,
and Q.. Once convergence is achieved, the remaining unknowns are computed
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directly as in the previous case. This method fails if the two nonlinear boundary
conditions are located on two adjacent sides of a rectangular domain.

(iii) Swarztrauber [10] has extended the block cyclic reduction method to
solve separable elliptic equations. Since his method retains the special properties of
the block cyclic reduction method discussed in Section 3, it should be possible to
solve linear separable elliptic equations with nonlinear boundary conditions using the
techniques developed in this paper.

APPENDIX A: DERIVATION OF AN EXACT SOLUTION
FOR THE CAPILLARY WAVE PROBLEM

Consider the nonlinear capillary wave problem shown in Fig. 3:

’Q &0
9Q :
W—asth on y=0, {Alb)
09 _
—3;—0 on y=-—1, (Alc)
06, v)=0@ +4y), —1<¥<O0. (Ald)

An exact solution for capillary waves on a fluid of infinite depth was first derived by
Crapper [16]. In his case, boundary condition (Alc) is replaced by

0-0 as Y- —oo. (A2)

Crapper assumed that @ satisfied the condition

‘Z% = f(y) sinh Q, (A3)

for all (¢, ). This leads to a solution involving only elementary trigonometric
functions. Later Kinnersley [17] solved problem (A1) for finite fluid depths using the
same assumption (A3). If we substitute (A3) into (Alb) and (Alc), we find

f0)=a, (Ada)
f(=1)=0. (A4b)
We can integrate (A3) to obtain

In tanh(Q/2) = F(vw) + G(¢), (AS)
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where

dF(y)

2 =T (46)

and G(¢) is arbitrary; thus

0= [ Fev @

where
X(9) = €9, (A8)
Y(y)=e". (A9)

After substituting (A7) into (Ala), we find that X(¢) and Y(y) must satisfy the two
nonlinear differential equations

(X'(#)’ = ~a, — &, X*($) — a; X* (), (A10)

(Y'(W)) =a;+a,Y(y) +a, Y (w), (A1)
where a,, a,, and a, are constants. The solutions of (A10) and (A11) are expressible
in terms of elliptic functions.

To fix ideas, consider the case where Q is small resulting from X(g) Y(y) being
small; we can approximate Q from (A7) by

0~2X(¢) Y(y) for X(¢) Y(w)—0. (A12)
We differentiate (A10) to obtain
X"(§) =—a,X($) — 2a; X°(9). (A13)

Assuming X(¢) is small, we can neglect the cubic term in (A13), and a, must be
positive to obtain a solution which is bounded and periodic. To obtain real solutions
for X(¢) and Y(v), a,, a,, and a, cannot all have the same sign. With these
restrictions we limit our choices of a,, a,, and a, to three, which are

CaseI: a, <0, a,>0, a,>0,
Case II: a; >0, a,>0, a;<0,
Case III: a; <0, a,>0, a;<0.
After analyzing the three cases, we find that only Case I yields satisfactory solutions.

The exact solution is given in (14). Substituting (14) into (A3) and (A4), we obtain
dispersion formula (15).
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APPENDIX B: GENERATION OF NEW SOLUTIONS FROM THE
EXISTING SOLUTION OF EQ. (28)

Equation (28) can be rearranged in the form
§1.6/=B/, (Bl)

where B’ is the M X M block matrix of the following form

A d ol
ol A o 0
B'= : ) (B2)
0 of A ol
ol o A

I is the (2N +1)X (2N + 1) identity matrix and A is the (2N + 1) X (2N + 1)
tradiagonal matrix

—-2(1+0) 2
: 1 —2(1+0) 1
A= o T , (B3)
1 —2(1+0) 1
2 —-2(1 +0)
Q’ and b’ are vectors in partitioned form
?l I_)l
@ | b
Q= : , b’ = : ) (B4)
Q_[W—l blrlvl
Qu by
and
(010 ] (0 )
Q. 0
Q=] 0|, Bb=|-2aksinhQ |, /=12, M (BS)
Ql,N—l E
; L Y J
L QI.O J

We note that the vector Q, now consists of all the unknowns on the gridline ¢ = ¢, in
Fig. 4.
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Suppose QT = [Q,, Q,,-., Q,,] is a solution of (B.1). We define a new vector Q as

Q" =(Q,.Q,., Qul; (B6a)
= [Qz, 03 seeey OM’ Ql] (B6b)

Thus, Q is obtained by permuting the vectors of Q once; physically this means that Q
differs from Q by the phase factor Ag.

If we substitute Q into (B1) we find that Q is also a solution of (B1) because the
system of equations

B'-Q=b, (B7)

where b = [b,, b, ..., b,,, b, ], is identical to B’ - Q = b, the only difference being that
the equations appear in a different sequence. Similarly, we can continue to cyclically
permute the vectors of Q to generate additional solutions with different phases. In
general, if there are M grid points in the ¢ direction, we can generate (M — 1)
different solutions from a known solution, and each solution differs in phase from the
known solution by a multiple of the phase factor 4¢ = 1/M.
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